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We study the dynamics of oscillators that are mutually coupled via dissimilar �or “conjugate”� variables and
find that this form of coupling leads to a regime of amplitude death. Analytic estimates are obtained for coupled
Landau-Stuart oscillators, and this is supplemented by numerics for this system as well as for coupled Lorenz
oscillators. Time delay does not appear to be necessary to cause amplitude death when conjugate variables are
employed in coupling identical systems. Coupled chaotic oscillators also show multistability prior to amplitude
death, and the basins of the coexisting attractors appear to be riddled. This behavior is quantified: an appro-
priately defined uncertainty exponent in the coupled Lorenz system is shown to be zero.
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Coupled nonlinear dynamical systems have been exten-
sively studied from both theoretical and experimental points
of view. Motivation for such work has come from fundamen-
tal as well as practical points of view: systems are rarely
isolated and interactions between them frequently give rise
to new phenomena which can be exploited in applications.
For instance, it has long been known that weak coupling of
nonlinear oscillators leads to synchronization �1�. Recent
studies have explored the effect of coupling between nonlin-
ear systems that can lead not only to chaotic synchronization
but also to a host of other phenomena such as hysteresis,
phase locking, phase shifting, phase-flip or amplitude death
�1–3�. These studies have broad relevance to many areas of
research since nonlinear dynamical systems arise in a variety
of contexts in the physical, biological, and social sciences.

In amplitude death �AD� �4� the interaction between two
oscillators causes a pair of fixed points to become stable and
attracting. These fixed points can either be those which exist
�and are unstable� in the uncoupled system, or these can be
entirely new fixed points, created by the coupling. AD can be
of considerable importance in controlling oscillatory dynam-
ics, and is known to occur when the oscillators are mis-
matched �5–7� or when the interaction between the oscilla-
tors is time delayed �8–11�.

In the present work, we study oscillators coupled through
dissimilar �or conjugate� variables. Our main result is that
through this strategy, it is possible to control them to a re-
gime of AD even when the oscillators are identical. AD oc-
curs here in the absence of time delay, and thus this is a new
scenario for the occurrence of AD �9–13�.

Coupling via conjugate variables is natural in a variety of
experimental situations where subsystems are coupled by
feeding the output of one into the other. An example from the
recent literature is provided by the experiments of Kim and
Roy on coupled semiconductor laser systems �14�, where the
photon intensity fluctuation from one laser is used to modu-
late the injection current of the other, and vice versa.

Coupling through conjugate variables thus appears to pro-
vide something such as time-delayed interaction, at least in-
sofar as causing the coupled oscillator system to make a
transition to a regime of AD. The similarity between time-
delayed variables and conjugate variables has been exten-
sively employed since the early 1980s, in the process of at-
tractor reconstruction �15�. As is well known, time series

measurements of a single observable can be used to recon-
struct an attractor by using delay variables; indeed Takens’
embedding theorem �16� asserts that the topological proper-
ties of the reconstructed system match those of the true sys-
tem with appropriate choices of embedding dimension and
time delay.

We first present results for the Landau-Stuart oscillators
�9,11,12� which are specified by the equation of motion

ż = �1 + i� − �z�2�z . �1�

Here � is the frequency, and z�t�=x�t�+ iy�t�. When two such
oscillators are coupled through conjugate variables �which
we take to be dimensionless� the dynamical equations, ex-
pressed in Cartesian coordinates are

ẋi = Pixi − �iyi,

ẏi = Piyi + �ixi + �xj . �2�

We have used the notation Pi=1− �zi�2, i , j=1,2, and j� i.
The parameter � governs the strength of the coupling and for
simplicity we take �i=�.

There are two sets of fixed points for the system: the
origin �0,0,0,0� which exists for all �, and the pair
�x1* ,y1* ,−x1* ,−y1*� given by

x1* = ± ��/��1 + ��� − �2�

and

y1* = ± ��1 − x2� + ��� − �2, �3�

which exist only for nonzero �. For ��� these are also real
and stable; thus ��� signifies the region of AD. Eigenval-
ues of this latter fixed point are computed for the case �
=2 and shown in Fig. 1�a�, along with the largest Lyapunov
exponent as a function of the coupling. Prior to �=2 the
largest Lyapunov exponent is zero and the second largest
�not shown� is negative, indicative of limit cycle behavior.
Beyond �=2, there is a region of multistability �boxed�
where both the fixed point attractor and limit cycle coexist.
On further increasing �, in the AD region, transient trajecto-
ries decay monotonically to the fixed points given by Eq. �3�
as shown in Fig. 1�b�.

Coupling with dissimilar variables can lead to AD even
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when the coupling is bidirectional and “diffusive” as in the
following Landau-Stuart oscillator system �9,11,12�:

ẋi = Pixi − �iyi + ��yj − xi� ,

ẏi = Piyi + �ixi + ��xj − yi� . �4�

Now apart from the fixed point at z=0, there are an infinite
number of other fixed points, given by the condition

x1�
2 + y1�

2 = x2�
2 + y2�

2 =
��y1�y2� − x1�x2��

�

= 1 − ��1 − � x1y1 + x2y2

x1x2 + y1y2
	
 . �5�

At the origin the characteristic eigenvalue equation for �4� is

��1 − � − ��2 + �2 − �2�2 = 0. �6�

Taking �=�+ i� and separating real and imaginary parts
leads to the pair of conditions �=1−�, �= ±��2−�2 for �
�� and �=1−�±��2−�2, �=0 for ���.

AD now occurs in the interval 1��� �1+�2� /2. The val-
ues of � for which �=0 are easily determined; thus for �
�� there is AD for ��1. Similarly if ��� then there is AD
for �� �1+�2� /2. This region can be extended by increasing
�. In addition the inequality �1+�2� /2�1 makes AD impos-
sible for frequencies below �=1.

For purposes of computation, we used �1,2=�=2, as in
the previous case. Analytic estimates of the eigenvalue � are
shown �with circles� in Fig. 2�a� and compared with numeri-
cal calculations of Lyapunov exponent for Eq. �4�. All
Lyapunov exponents are negative, confirming the occurrence

of AD �see Figs. 2�a� and 2�b�� and �, the real part of the
eigenvalue at z=0 coincides with the largest Lyapunov ex-
ponent. For ��1 the dynamics are periodic; the only fixed
point, z=0 is unstable, and at �c, a reverse Hopf bifurcation
leads from limit cycle to AD �see Fig. 2�a��. Here we find
that even in the absence of explicit time delay in the cou-
pling, AD occurs over a wide range. On increasing � above
�1+�2� /2 �beyond the point marked B in Fig. 2�, all
Lyapunov exponents remain negative, however with the larg-
est Lyapunov exponent being nearly zero. In this regime AD
also occurs on another set of fixed points which satisfy the
relation, Eq. �5� �17�, since the origin is unstable. As the
imaginary part of the eigenvalue of the stable fixed point is
zero, AD occurs in an overdamped manner, without oscilla-
tion; Fig. 2�c�. The transition at B appears to be a higher
dimensional pitchfork bifurcation �17�.

Some comments will serve to put the present results in
perspective. Earlier studies of coupled Landau-Stuart oscil-
lators by Aronson et al. �6� have shown that AD is only
possible for instantaneous coupling for ��1 when the intrin-
sic frequencies are disparate, ��1−�2 � �2�2�−1. On the
other hand, when there is time delay, AD occurs even for
identical oscillators with ��1 �11�.

We have studied a number of other systems and find quite
generally that coupling via dissimilar variables appears to
lead to AD. Numerical results are presented for the system of
coupled chaotic Lorenz oscillators, described by the equa-
tions

ẋi = 10�yi − xi� ,

ẏi = − xizi + 28xi − yi + ��xj − yi� ,

żi = xiyi − 8
3zi, i, j = 1,2, i � j . �7�
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FIG. 1. �Color online� �a� Plot of largest Lyapunov exponent as
a function of coupling parameter, �. Circles ��� correspond to the
analytical prediction for the real part of the eigenvalue. The boxed
region of the curve as labeled is the region where the fixed points
and the limit cycle coexist. Only stable attractors beyond this region
are fixed points given by Eq. �3�. �b� Transient trajectories of the x
components of the two oscillators are shown as a function of time
for amplitude death at �=2.5.
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FIG. 2. �Color online� �a� The largest three Lyapunov exponents
as a function of coupling parameter, �. Circles ��� correspond to the
analytical prediction for the real part of the eigenvalue. Amplitude
death occurs beyond the point marked A. The x components of the
two oscillators are shown. AD can occur �b� with oscillation, �
=1.25 or �c� a monotonic decrease in the amplitude, at �=2.75.
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This is a six-dimensional dynamical system and the larg-
est Lyapunov exponents are shown in Fig. 3. Immediately
preceding the regime of amplitude death—when all
Lyapunov exponents become nonpositive—the largest
Lyapunov exponents show wild fluctuations as a function of
�. There appear to be two coexisting attractors with different
relative phase relations depending on initial conditions.
These attractors are both chaotic, but one is in-phase while in
the other, the chaotic oscillators have a mixed-phase relation-
ship as can be seen in Figs. 4�a� and 4�b�.

Multistability �18�, namely the coexistence of dynamical
attractors has also been associated with the phenomenon of
riddling: the basins of different attractors can be interwoven
in a complex manner everywhere. Riddled basins have been

observed in mismatched coupled oscillator systems �18� also
for the case of time delays �19�. One consequence is that
vanishingly small changes in initial conditions lead to differ-
ent attractors, making the system completely unpredictable.
Dynamics in the uncoupled system ��=0� of identical Lorenz
oscillators is chaotic for the parameter values considered. For
nonzero � the dynamics changes drastically: the system is
bistable for a range of coupling and this eventually leads to
AD, as can be seen from the largest three Lyapunov expo-
nents for the coupled system, Fig. 3. All Lyapunov exponents
are negative above �=0.44.

Examination of the corresponding basins �17� suggests
that these are riddled �17,18� �data not shown here�. It is
possible, however, to verify the riddling via the computation
of an uncertainty exponent �20�. Fixing a perturbation � and
randomly choosing a pair of systems with ��−�� � �� within
the region R, the parameters are termed uncertain if they
yield different asymptotic states. The fraction of uncertain
parameter pairs f��� typically decreases with � as a power
law,

f��� � �	, �8�

which defines the uncertainty exponent 	. Results are shown
in Fig. 4�c� for the Lorenz system: the exponent is approxi-
mately zero �the best fit to the data yields 	=0.006±0.003�
which is typical of riddle or riddlelike basins �18�. The prac-
tical implication is that in this region, the attractor cannot be
predicted no matter how small the uncertainty in the specifi-
cation of parameters.

In summary, in this paper we have studied the effect of
coupling systems via conjugate or dissimilar variables. This
type of interaction, which frequently arises in experiment,
gives rise to phenomena: amplitude death in the absence of
delays, and riddling can occur in identical coupled systems.
Our results appear to apply generally to coupled nonlinear
dynamical systems, and have been verified both analytically
for coupled Landau-Stuart oscillators and numerically for
coupled chaotic oscillators.

We have studied both diffusive and nondiffusive coupling.
In cases of AD when the coupling is diffusive, the interaction
term can vanish. The stable fixed points are those which are
stationary points in the uncoupled subsystems. This applies
in the Landau-Stuart case when xi�=yi�
0 in the region be-
tween A and B in Fig. 2�a�. It is also possible that the cou-
pling term does not vanish and there are new solutions that
are created: this happens in the AD region beyond B where
the new fixed points are given by Eq. �5�.

In addition to the cases discussed here, we have observed
AD and riddling in the cases of mismatched conjugate
coupled and time-delay coupled chaotic oscillators and in
mismatched conjugate coupled and time-delay coupled limit
cycle oscillators. Apart from simple two oscillator systems,
we find regimes of oscillator death in the case of a globally
coupled network of identical Landau-Stuart oscillators �17�,
which further underscores the generality of the phenomenon.

One of the authors �R.K.� thanks UGC, India for support
and one of the authors �A.P.� thanks the DST, India, for fi-
nancial support.

0.2 0.3 0.4 0.5 0.6
ε

0

0.5

1

λ i
Bistability region

AD

λ1

λ2

λ3

FIG. 3. �Color online� The largest three Lyapunov exponents as
a function of the coupling parameter � for the coupled Lorenz os-
cillators, Eq. �7�. The plot shows averaged Lyapunov exponent val-
ues for 10 different initial conditions.
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FIG. 4. �Color online� The relative phase between oscillators of
coexisting chaotic attractors in the x1-x2 plane at �=0.38 for differ-
ent initial conditions showing �a� chaotic in-phase dynamics and �b�
chaotic motion without a specific phase relationship. �c� shows the
fraction of uncertain parameter pairs �out of a sample of 200� as a
function of the parameter perturbation � for Lorenz coupled oscil-
lators. This calculation is done for the region of bistability in Fig. 3.
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